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Abstract. We analyse the critical behaviour of a three-dimensional spherical model with 
nearest-neighbour ferromagnetic interactions (of strength J > 0) in which there is a regular 
array of planes of bond defects (perpendicular to the planes) of strength J‘: 0 6 J‘ J spaced 
n lattice sites apart. For a fixed, non-zero defect strength J’, the critical temperature has the 
form TJJ’, n) = T,(pure)+cl(J‘)n-’+cz(J’)n-’+o(n-*) .  For J’ = 0 the problem reduces 
to that of finite size effect, while at J ’ = J  the system becomes homogeneous. Two 
asymptotically distinct scaling regions correspond to these limiting cases. In both scaling 
regions the spherical field scales with the variable n E n2d where 4 is proportional to the 
deviation in spherical field. In terms of the variable h 1 - (J’ /J)’  and its conjugate 
x = (J’/J)’, the impurity strength scales as y = nh in the region near J’ = J ( A  = 0) and as x 
for J’ away from zero. These scaling relationships are valid for the spherical constraint 
equation and the thermodynamic quantities such as the specific heat and entropy. 

1. Introduction 

The effects of impurities and defects on the critical behaviour of magnetic systems have 
been studied by many authors (see e.g. Harris 1974, Herman and Dorfman 1968, Lee 
1974, McCoy and Wu 1968, Sawada and Osawa 1972, Suzuki 1974, Rapaport 
1972a, b, Miyazima 1973, Au-Yang et a1 1976, Au-Yang 1976, Fisher and Au-Yang 
1975). Related problems involving perturbations to critical behaviour are associated 
with finite size, restricted dimensionality and surfaces (Ferdinand and Fisher 1969, 
Fisher and Ferdinand 1967, Barber and Fisher 1973, Fisher and Barber 1972). Much 
previous work on both of these questions involves utilising approximations or numeri- 
cal techniques whose validity is difficult to establish; however, several extensive exact 
calculations have been performed on the Ising and spherical models. Among these are 
(i) work on the specific heat anomaly in an n x m Ising spin system, and the effects of a 
surface on critical behaviour, by Fisher and Ferdinand (1967; Ferdinand and Fisher 
1969); (ii) the calculations (Au-Yang et al 1976, Au-Yang 1976, Fisher and Au-Yang 
1975) of the shift in critical temperature and near-critical thermodynamic functions for 
square lattice Ising models with regular arrays of various types of point defect; (iii) the 
study of the effect of finite thickness on the critical behaviour of the spherical model 
(Barber and Fisher 1973); (iv) the work by McCoy and Wu (1968) on a square lattice 
Ising model with random layered impurities. 

In this paper we analyse the critical-point behaviour of a three-dimensional 
spherical model with nearest-neighbour ferromagnetic interactions (of strength J > 0) 
in which there is a regular array of planes of bond defects of strength J’: 0 s J’  s J 
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(perpendicular to the planes) spaced n lattice sites apart (see figure 1). For J’ = J and 
arbitrary n, or for J’  arbitrary and n +CO, the model reduces to the original uniform or 
homogeneous three-dimensional model. For a fixed strength of impurity J’ the 
problem is analogous to that studied by Au-Yang, Fisher and Ferdinand (Au-Yang et a1 
1976, Au-Yang 1976, Fisher and Au-Yang 1975). On the other hand, if the full range 
of J’ is considered, the problem involves crossover behaviour from two-dimensional to 
three-dimensional critical behaviour via two independent parameters, namely J ’ /  J and 
n. In the spherical model, this is particularly interesting since the two-dimensional 
system does not exhibit a transition at non-zero temperature, while the three-dimen- 
sional system has a phase transition at a finite temperature. In the limit J ’  = 0, where 
each film of width n is independent of all other films, the problem is completely 
equivalent to the finite size effect problem in which a d-dimensional system is infinite in 
d - 1 dimensions and finite (of length n )  in the other dimension. 

Y 

Figure 1. Illustration of a three-dimensional cubic lattice with nearest-neighbour bond 
interactions J with layers of impurities of bond strength J’in planes, spaced n apart, parallel 
to the x y  plane. The thermodynamic limit is taken by allowing N I ,  N2, N3, to approach CO 

while n remains fixed. - J ;  ,- J‘. 

Hence, in the special case J’  = 0 our explicit results should and do reproduce the 
corresponding expressions of Barber and Fisher. These results further illuminate the 
transition from finite size to the full three-dimensional system in that this transition can 
also be induced by means of the parameter J’ /J .  

The full range of behaviour of the model in terms of the parameters n (1 s n s 00) 

and 

A E 1 - ( J ’ / J ) 2 ,  (1.1) 
( O s A  C 1) is illustrated in figure 2. One of the interesting questions is whether the 
transitions from various limiting parts of this diagram are described continuously by one 
scaling relationship, or whether, for example, the region A = 0 is asymptotically 
completely separated from the A = 1 region. In fact we find that the scaling variables 
differ in the two regions, i.e. near A = 0 and A = 1, while the transition between the two 
regimes is accomplished smoothly by means of a function involving the scaling variables 



The spherical model with layered impurities 2425 

pure 2 D 
\ 

A =  L 

3 D  w i th  defects  

-pure 3 D  

i 

Figure 2. Schematic representation of the impurity problem in terms of the parameters A, 
which is a measure of impurity strength, and n, which is a measure of concentration. For 
A = 0 (i.e. J' = J )  and arbitrary n one has no impurities, represented by the lower horizontal 
line; for n = CO and arbitrary A, one also has pure three-dimensional behaviour, represented 
by the vertical line on the right. In the case of A = 1, the lattice decouples and becomes a set 
of independent two-dimensional systems as indicated by the upper horizontal line. 

of both regions. The scaled variable involving the reduced spherical field z and its 
critical value zc (see (4.3) and the Appendix) is found to be 

x = n 2 4  ( 4 = z - z c )  (1.2) 

and is valid throughout the entire A -region. The scaled variable involving A differs in 
the two regimes mentioned above; near A = 0 the scaled variable is 

y = nA, (1.3) 

while at the A = 1 end the scaled variable is simply h. Thus, with K = J/kBT,  where T is 
temperature, the spherical constraint equation (see (2.12)) may be expressed in the 

--- . .  > \ - I  , .. , ,e, ,, s,, 

for large n and arbitrary A, where the first term on the right-hand side is the expression 
for the homogeneous model. In the reg.ion A -0. the variable i is unnecessarv as a 

I ne scaling Denaviour 01 tne spnericai constraint equation governs tne tnermo- 
dynamic functions. The expression (1.4) implies, for example, that the zero-field 
specific heat per spin, CH(T) ,  has the form (see (7.11) and (7.12)) 

C H ( T )  = CH(pure, T )  + n - 1 2 J 2 / k ~ T 2 [ a f ( X ,  y ,  i ) / a 4 ] s  (1.5) 

where the subscript S indicates that the parameter 4 is determined by the spherical 
constraint (1.4). Thus, the behaviour in the two regions of A and the crossover between 
these regimes as discussed above applies to the specific heat as well. Thermodynamic 
functions such as the entropy and internal energy are obtainable in a similar way. 
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In addition to the scaling relationships we also obtain an asymptotic expression for 
the critical temperature T&, n) .  For fixed, non-zero A, we find that as n + 0;) the critical 
temperature is of the form 

T&A, n ) =  T,(O)+cl(A)n-’+~z(A)n-~+o(n-*) .  (1.6) 
This is to be compared with the work of Au-Yang, Fisher and Ferdinand in which the 
critical shift for a two-dimensional Ising model with regularly spaced point impurities of 
concentration l / n  entails a term of the form In n. The scaling theory advanced by 
Fisher and Au-Yang (1975) traces the origin of the n--2 In n term to the logarithmic 
divergence of the specific heat. In a qualitative sense, our results are consistent with this 
scaling hypothesis since the spherical model does not exhibit any specific heat diver- 
gence and the corresponding argument would at worst suggest a n-31n n term. 
However, it should be emphasised that planes of impurities could well influence the 
critical behaviour in a way which is rather different from point defects. 

The main part of our analysis concerns the spherical constraint equation (see 
equation (2.12)), which essentially governs the overall thermodynamic behaviour of the 
model. The critical temperature is obtained quite directly (see 0 2) from this equation. 

Specifically, the contents of the subsequent sections are as follows. In § 2, we begin 
by defining the spherical model in the mean spherical form and discussing some of the 
essential features of the pure two- and three-dimensional models. The problem of 
layered impurities is then formulated and the fundamental parameters are defined. In 
§ 3, the matrix ( s l - J )  for a finite system, where s is the spherical field, I is the identity 
matrix while J is the matrix of interactions (including impurities), is transformed and its 
determinant is evaluated as a three-fold product. In § 4, the logarithm of this deter- 
minant is analysed in the thermodynamic limit of infinite system size for fixed n. An 
expression is obtained in which the temperature is expressed in terms of the generalised 
Watson function (Barber and Fisher 1973) W&) and two double integrals which are 
analysed in subsequent sections. At this point we consider different scaling regimes 
separately. First, in 0 5 ,  the situations for J’ fixed with J’ # J and J’+ 0 are analysed, 
and an asymptotic expression for the shift in critical temperature is obtained for J’ 
fixed. In § 6 ,  the situation for J ’ +  J (as n + CO) is analysed and the crossover behaviour 
between this limit and the J’ fixed and J’+ 0 limits is described explicitly. A qualitative 
discussion of the crossover behaviour and the implications for various thermodynamic 
functions is the topic of § 7. In § 8, we discuss the formulation of the problem for other 
dimensions and co-dimensions (i.e. dimensionality of space minus dimensionality of 
impurities). 

2. Formulation of the problem 

The spherical model of a ferromagnet was originally proposed by Kac, and later solved 
exactly by Berlin sand Kac (1952; Joyce 1972). The rigid ‘constraint’ 

2 
cr i  =1  

which is satisfied by each of the spin variables ui =5 f 1 at the ith site of an Ising model 
lattice is relaxed and replaced with the overall ‘spherical Constraint’ 
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where the ui : - M e cq C CO are now taken as continuous real variables. In the thermo- 
dynamic limit (in which N + 00) the strict spherical constraint (2.2) may be replaced with 
no error by the 'mean spherical constraint' 

(N-' 2 U?)  = 1 
i = l  

where ( ) denotes the standard expectation value or ensemble average, 

(X) =Tr(X e-@%)/ Tr(e-@%) (p  E l/kBT). 
The mean spherical constraint (2.3) may be expressed in a more convenient form by 
introducing a spherical field -s, conjugate to S2, directly into the partition function. 
The Hamiltonian for the so-called mean spherical model is then 

where we assume the lattice of N sites is a section of a d -dimensional hypercubic lattice 
(although more general lattices may be considered without introducing further 
difficulties). The parameters Jij are the exchange energies between spins at sites i and j ,  
while hi = mHi is the (reduced) magnetic field at site i .  The first sum in (2.4) runs over all 
pairs of spins. The partition function and free energy per spin are then given by 

m CO 

ZN = I dui  . . . I dUN eXp[-/3%(Ui, . . . , U N ) ] ,  

F(P, {hi}, S)  = -(1/PN) In ZN(P, {hi}, SI. 

(S2 /N> = (a/as)F(p, {hi}, s) = 1. 

(2.5) 

(2.6) 

(2.7) 

-m -m 

The mean spherical constraint (2.3) may now be written in terms of the free energy as 

The first term in the Hamiltonian (2.4) is a symmetric quadratic form in the spin 
variables. Hence, it is diagonalised by an N x N unitary matrix U which must satisfy 

UJU-' = D, (2.8) 
where J = {$Jij} is the interaction matrix and D is the diagonal matrix D, = Swpq while 
pq (q = 0, . . . , N - 1) are the eigenvalues of J in decreasing order. Upon defining the 
variables eq by 

and restricting the fields to be uniform (hi = h ) ,  the free energy may be written as 

and the spherical constraint (2.7) is expressed by 

1 h2  N-1 
- 1 -- --(1-- 1 N - l  1 
2 N  q=o s -pq  kBT 4 N  q=o (S 

(2.10) 

(2.11) 

The magnetisation per spin M ( p ,  h ) ,  the (reduced) zero-field susceptibility xo( T ) ,  the 
entropy per spin S(p,  h )  and the zero-field specific heat per spin CH(T) can now be 
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expressed in the following form: 

(2.12) 

,yo(T) = lim ( ~ M / ~ H ) T , s  = lim [M(& h ) / h ] ,  (2.13) 
H - 0  h+O 

(2.14) 

(2.15) 

Note that the thermodynamic formulae are defined so that they are consistent with 
those of the original Kac spherical model in the thermodynamic limit. 

We will return to these thermodynamic functions toward the end of our analysis (see 
0 7). At present, however, we concentrate on the spherical constraint equation (2.1 1) in 
zero field. Before introducing any inhomogeneities into the lattice, it will be useful to 
discuss the behaviour of the spherical constraint equation for a pure homogeneous 
system in the thermodynamic limit (N + 00). We consider nearest-neighbour ferro- 
magnetic interactions of strength J > 0 and define the dimensionless inverse tempera- 
ture 

K=pJ=J/kBT (2.16) 

and the reduced spherical field 

For such a system in the thermodynamic limit one can show (Barber and Fisher 
1973) that the spherical constraint in zero field becomes 

2K = wd(4), (2.18) 

where the generalised Watson function of order d is defined by 

(2.19) 

The analytic properties of these functions have been studied extensively (see Appendix 
A in Barber and Fisher (1973) for d = 2 and d = 3). The critical value of 4 is 4, = 0, 
which determines the critical temperature T, (at which point the susceptibility diverges) 
via 

2Kc= wd(0). (2.20) 

For d s 2 the integral diverges, so T, = 0,  while ford = 3 the integral is finite and may be 
expressed in terms of complete elliptic integrals of the first kind (Barber and Fisher 
1973, Watson 1939), with the result 

KJd = 3) = 0.126 365 . . . I (2.21) 
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The behaviour of Wd(x)  for small x ,  which is important in studying the critical 
region, is 

W z ( x )  = In x- ' /47~  + 5 In 2 / 4 ~  + x In x - ' / 3 2 ~  + O(x) ,  (2.22) 

(2.23) W ~ ( X )  = W3(0) - ~ ' ' ~ / 4 7 ~  + O ( X )  

for d = 2 and d = 3 respectively (see figure 3) .  

I is) 

i 
I 

d-2 [pure] k 
d = 3  [w i th  impurit ies) 

g d =  3 [pure) 

I I  

S 

Figure 3. Sketch of the spherical constraint function Z(s) for (i) d = 2 (pure), for which Z(s) is 
the Watson function in two dimensions W,, showing the logarithmicdivergence at s = 4; (ii) 
d = 3 (pure), for which Z(s) is the Watson function in three dimensions, W,, and has a 
singularity at s = 6, Z(s) = W3(0) of the form (s -6)1/2/4a; (iii) d = 3 with impurities, for 
which Z(s) has a singularity of the form (s - sJ1/' at a critical value s, which is shifted to the 
left of s = 6 by an amount of the order n-', corresponding to a shift in K, of order n-'. 

We note also that the functions W d ( 4 )  may be generalised to non-integral d ,  thereby 
defining a spherical model for non-integral dimension. This device is often useful in 
determining the origin and behaviour of singularities in thermodynamic functions. We 
will address this point upon completion of our analysis of two-dimensional layers in 
three dimensions. 

Consider now the spherical constraint (2.1 1) for an arbitrary matrix J. In order to 
avoid the necessity of determining all of the eigenvalues pq, we write the spherical 
constraint in zero-field as 

1 
In det(sI - J )  = - i a  -- 

2N as k g  T' 
(2.24) 

Consequently, an analysis of the determinant of the matrix ( S I - J )  and its largest 
eigenvalue will be sufficient to determine the critical temperature and the scaling 
relationships in the critical region. 

Let us specialise now to the problem of two-dimensional layers of impurities in a 
three-dimensional lattice with periodic boundary conditions. Consider a lattice of 
dimensions N3,  Nz  and Nln  in the 2, y^ and 2 directions (unit vectors io, Yo, io), 
respectively, so that N E NINZN3n. The interactions consist of nearest-neighbour 
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ferromagnetic couplings of strength J, except for those bonds which are in the 2 
direction and are a distance of a multiple of n away from the x y  plane crossing the 
origin, in which case the interaction is modified to J’ (see figure 1). More formally, if A 
is the set of nearest-neighbour pairs (i, j )  and B = { ( i ,  j )  E A: i = p i 0  +c&+ rn.20, j = 
p i o  + q i0+ (m + l ) i0} where p ,  q, r are integers, then the interaction Jij may be defined 
by 

Jij = J if (i, j )  E A\B 
J’ if ( i ,  j )  E. B (2.25) 

0 otherwise. 

Let us consider the various limits of these impurities. For J’ = J(A = 0, A = 1) and 
arbitrary spacing n between planes of impurities, we recover the pure three-dimen- 
sional system. For J ‘ =  0 (A = 1, A = 0) and finite n, we have a set of decoupled, 
essentially two-dimensional systems (more precisely, each independent system is one of 
finite thickness, n, in one dimension and infinite in the other two, thereby having 
two-dimensional critical behaviour at a shifted critical value, s,, of the spherical field). 
For infinite layer spacing n, the pure three-dimensional behaviour is once again 
recovered for arbitrary J’ .  The situation is represented diagrammatically in figure 2. In 
between these limiting values of A and n is a region of a three-dimensional system with 
impurities. The questions we raise deal with (i) how the critical temperature (and other 
thermodynamic properties) is shifted for a fixed concentration (in terms of A and n )  of 
impurities, and (ii) how the various parameters A ,  i, n, 4, T, are scaled in order to 
produce the transition from two-dimensional behaviour to three-dimensional; in 
particular, how large n must be in comparison with A as A + 0, or as T + T,, etc. 

3. The determinant of (SI - J )  

In this section we begin OUT analysis of equation (2.24) by deriving an identity for 
det(s1 - J ) .  The matrix SI - J  may be written in blocks of NINzn as 

where EO is the matrix of interactions within individual y z  planes and El is the matrix of 
interactions for neighbouring planes; an explicit definition of Eo and El will follow. A 
block cyclic transformation (Camp 1971, Muir 1960) for the matrix (3.1) along the x^ 
direction yields 

N 

j - 1  
det(sI - J )  = fl det(Eo + 2 a j E 1 )  

with ai = cos(2rj/N3). 
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Similarly, Eo and El are expressed in blocks of Nln  as 

where Bo is the matrix of interaction for individual rows (i.e. spins along the 2 direction) 
and Bl is the matrix of interaction between neighbouring rows. Explicitly, Bo and B1 
are given by 

where the n x n matrices CO and C1 are defined by 

CO = 

S -J 
-J s -J 

-J 

-J 
-J s 

B1= -JZ 

i 
, c1= \ -J’  

(3.4) 

(3.5) 

Performing a cyclic transformation in the y direction results in expressing the 
determinant as 

N N  

k = l  j=1 
det(s l -J)  = rl‘ fl det(BO+2ajB1+2&B1) (3.6) 

where P k  = cos 21~k/N2. A final cyclic transformation (Camp 1971, Muir 1960) in the f 
direction (in blocks of N I )  yields the form (with yl= 27rllN3) 

N I  N2 N ,  
det(s1-J) = n IT det(Ao+C1 e-iyi +C: eiyf), 

1=1 k = l  j = 2  
(3.7) 
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in which the n x n matrix A.  is defined by 

A o = [  -J d ( j , k )  

d ( j ,  k ) E s - 2 ( LY j + @ k ) J .  

(3.8) 

d(j ,  k )  -J 

-J 
-J d ( j , k )  

Consequently, the problem reduces to evaluating an IE X n matrix, A,, of the form 

a b  

A ,  = 1 I: ' . .  );I. 
c2 b a  

Using the identity (Gradshteyn and Ryzhik 1965) 

f l - 1  

r = l  
n [x2-2x cos(xr/n) + 13 = (X2, - 1)/(x2 - 1) 

(3.9) 

(3.10) 

and the definitions x a b  = (a2 -4b2)1/2, Y(*) = ;(a It X a b ) ,  the determinant is expressed 
as 

[AflI=-(yY+) a - Y?-) ) -  (b2'C1C2)(Y&1 - Y;_S1)+(-1)"-1(~l+~2)bn-1, (3.11) 
xa b xa b 

upon expansion by cofactors. 

making the definitions 
The identity (3.11) can be applied to the determinant appearing in (3.7) upon 

a =d( j ,  k) /J=s/J-2ai-2@k, b = - 1  
t 

- 
c 1  = - JX  exp(iyl), c2=c1 

x = (a  - 4)'12, Y ,  =;(a i x )  

(3.12) 

(3.13) 

and using the identities 

(3.14) 
a 2  
x x  Y* -- - = f Y*, 

-yy: a F-YY:-' 2 = Y: .  
X X 

(3.15) 

The determinant of SI - J  is thus written in a convenient form as 

(3.16) 
h 

J - " d e t ( s I - J ) = n  ( Y :  +Y?+-(Y:- '  -Y11- ')-2J~cosyl 
j ,  k, 1 X 

where the products range over the same variables as in (3.7). 
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Two limiting cases in (3.16) are noteworthy: (i) in the pure three-dimensional case 
(i.e. J ' = J ) ,  the middle term in (3.16) vanishes as the determinant assumes the form 

J-" det(s1- J )  = n: ( Y: + Y! - 2 cos yl) ,  
Lk.1 

(3.17) 

which is equivalent, in the thermodynamic limit, to the right-hand side of (2.19); and (ii) 
in the decoupled, two-dimensional case (i.e. J' = 0), the cos y~ term vanishes, thereby 
reducing the triple product (which is to become a triple integral) to a double product 
(and hence a double integral). An analysis beginning directly with (3.17) reproduces, by 
different methods, the result of Barber and Fisher (1973 0 4) on free edges. This result 
will also follow as a consequence of more general relations to be established later. An 
understanding of the limiting cases above facilitates the decomposition of (3.16) into 
different components responsible for the behaviour of the model in various regions of 
the parameters. 

4. Simplification of the spherical constraint equation 

In the last section, det(s1-J) was written (see (3.16)) as a triple product over the 
discrete variables 1, k ,  j which range up to NI, N2, N3, respectively. Using this 
expression in the spherical constraint equation (2.24), and taking the thermodynamic 
limit (Nl, N2, N3 + CO) while n remains fixed so that the sums become integrals in the 
canonical way, i.e. 

we obtain 

(4.1) 

where the variables ai, @ k ,  y~ have been replaced by 8,4 and 4 respectively (by taking 
the thermodynamic limit) in det(s1 - J ) ,  in which we isolate 

The function A can be written in more complicated but more useful form by 
decomposing it into the components which are responsible for its behaviour in the 
various limits. Most important among these decompositions is the factoring of Y:  
which is responsible for the pure three-dimensional behaviour; the reasons for the other 
decompositions will be clear in the subsequent analysis. First, we make the definitions 

z zs l J -6  (4.3) 
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(corresponding to 4 (2.17) for a pure three-dimensional system) 

(Note that YA and Y? are generalisations of Y+ and Y-, respectively, for the case when 
the planes are not completely decoupling.) We state the identities 

(4.10) 1 Y - =  Y ;  , 

with which A may be written as 

A(& 4, 4)  = Y?BB(B, 4,9) ,  
where the function R is defined by 

(4.1 1) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

A Yi2"+' 
A 1 / 2 - 2 f i  Y;" cos 4. (4.16) 

2(p2 - Y+ - 2(p2 - 1) 
B = l +  Yi2" + 

Factoring further, one may write 

B RIBII, 

This leads to the decomposition 

a aY+/az aBI/az aBII/az - lnA=n----  +------I--. 
3r Y+ BI BII 

(4.17) 

(4.18) 

(4.19) 

The first two terms in (4.19) do not involve the variable 4, while the third involves 4 
through the cos II/ term in (4.18). The identity 

ay+/az = ~ + / 2 ( p ~ - i ) ' / ~  (4.20) 

reduces the first term to (n/2)(p2- 1)-'l2, while the identity 

(4.21) 
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simplifies the second term to -A [2(p2 - 1) YAf-’, We substitute (4.19) into the spherical 
constraint equation (4.1) and perform the integrals in the first term, obtaining 

(4.22) 

In the third term, n - ’ ( 2 ~ ) - ~  jjj dB d d  d$ BG’ (aBII/dz), the differentiation is post- 
poned as it is possible to integrate over the @ variable by writing BII in the form 

B I I = F - G  COS $, (4.23) 

and using the relation 

2rr F’ - G’ COS $ 
\O F - G cos CC, 

a 
az 

d$ = - ln[F + (F2 - G2)”2], 

(4.24) 

(4.25) 

where primes denote differentiation with respect to z. Combining these results, we can 
write the spherical constraint equation (4.1) as 

2n  

dB d d  
-A 

n 
0 

257 

+ - 4 2 ~ ) - ~  n ~ 1 n [ F + ( F 2 - G 2 ) ’ ” ] d B  dd. (4.26) 
0 

Up until this point no estimates have been made, as (4.26) and each of the preceding 
steps has been an identity. We note that the function w3(Z) is not uniquely defined a 
priori for 0 > z > -4d; however we adopt the convention throughout this analysis that 
the negative z axis will be approached via the limit u + 0 where z = U + iu. These 
questions are discussed further in Q 5. In the next section we analyse the integrals in 
(4.26), bounding remainder terms by O(n-’). 

5. The scaling regime of A bounded away from zero 

In analysing the integrals in (4.26) we initially consider the two scaling regimes: 

large; 

We will then discuss the crossover between these two regimes. Case (i) includes the 
limit A = 1, which, physically, is the situation where the planes decouple the three- 
dimensional block into independent slabs of thickness n. As discussed in 0 1, this limit 
involves an essentially two-dimensional system for finite n, so that the inverse critical 
temperature is infinite. Hence, an analysis of case (i) explicitly displays the transition to 
the two-dimensional system as A + 1 while n is finite. This complements the Barber and 
Fisher (1973) work, in which the finite size effect (A = 1, in our terminology) was 
examined as a function of n. 

(i) when A is fixed and non-zero, so that A >> l / n  eventually as n becomes very 

(ii) when A approaches zero at a rate faster than n-’. 
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The main results of this section are the following. 
(i) The shift in critical temperature is calculated explicitly to O(n-’) for fixed, 

non-zero A (see (5.23)). The inverse critical temperature diverges through a In i term 
(for fixed n )  as the interactions decouple the system into ‘films.’ 

(ii) An expression is obtained, to O(n-2), for the spherical constraint near the 
critical point. This then allows us to compute the basic thermodynamic functions as 
discussed in 0 7. 

(iii) The basic scaling parameters in this region are found to be x, which is mainly 
responsible for the transition between two- and three-dimensional behaviour, and 
x n2d, which is a measure of the proximity to the critical value of the spherical field. 

An important feature of the spherical constraint equation in the form (4.26) is that 
the first term does not involve n, and the second term, 

7.m 

0 

involves n only as a multiplicative factor, while the third term, 
2.ir 

(5.1) 

0 

entails a more complicated n dependence. 
In analysing Il we may initially consider z as a complex variable which lies in the 

upper half plane off the negative real axis. Furthermore, we take all branch cuts for 
z ” ~ ,  log z ,  etc. to be in the lower half plane, away from the negative real line, e.g. at 
8 = 5 ~ / 4  where z = r e”. Upon evaluating Il as a function of complex z, we may 
approach real negative z from above by a continuity argument (either by analytic 
continuation or by an Lm version of the Paley-Weiner theorem (see Rudin 1974 p 264). 
Similar arguments are needed in analysing various parts of 12, and we must consistently 
approach the negative real axis from the same direction, i.e. from above. 

We begin our analysis of the spherical constraint equation (4.26) (for case (i): A 
fixed) by considering the first integral, I I .  Decomposing the integrand by writing 

and performing the first three integrals results in 
2- 

II= - ~ W Z ( Z ) - ~ W Z ( Z + ~ ) + - W ~ ( Z ) + ( ~ ~ ) - ’ - _ ~ I  2-A 2(A - 1) Yhl d0 d4. 
A A 

0 

(5.4) 

The last integral in Il is, of course, a function of z through YA, which we will write 
explicitly as YA (2) when necessary. 

In analysing this part of (5.3) we make a choice of scaling which is motivated by the 
Appendix. The critical value of z ,  denoted zc, is determined through (4.3) by the largest 
root of A(0 = 4 = I) = 0) and is found in the Appendix to be bounded by 0 2 zc 2 
- r / ( n  + 1)’ where the upper and lower bounds are taken on at A = 0 (pure) and A = 1 
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(decoupled), respectively. We rewrite the reduced spherical field variable 4 (see (2.17)) 
and define the scaling variable x as 

4=t-.Zc,  (5.5) 

(5.6) 

The last term in (5.4) can thus be analysed as follows. The region of integration can 
be divided into the two regions r2 = 02+ q5'> n-' and r2 = 8 2 + 4 2  < U-'. One may 
easily establish the bounds 

(5.7) 

2 x = n  4. 

I YA ( 2 )  YA (011 a A 2, 

I YA (2) - YA (011 Iz 11'2, (5.8) 
from which follows the estimate 

27r 

0 

Hence, this last term in (5.4) does not contribute a non-constant term larger than 
O ( X ~ - ~ ,  n-2) .  This situation is summarised by writing 

2-A 
A 

n -'I1 = - 3 w2(t) - 3 W2(t + 4) + - W , ( Z )  + CA + O(xn -2, - 2 )  (5.10) 

where the constant (in the variables z or x )  CA is defined by 
27r 

0 

with o2 = 4(sin2 8/2 + sin2 412). 
We continue by analysing the remaining integral in (4.26), 

2rr 

I2 = (27r)-' ln[F + (F2 - G2)lI2] d8 d4, 

(5.11) 

(5.12) 
0 

by employing the following strategy. 
(i) We divide the region of integration into r < ( k + l ) ( l n  n ) / n  and r >  

(k + l)(ln n ) / n ,  where k is an integer B 6, and show that the outer portion does not 
contribute to the order of interest. 

(ii) Within the inner part of the integral, we bound the difference between the 
internal 1 2  and the corresponding integral in which w 2  has been replaced by r 2 .  

(iii) We are able to evaluate this new integral exactly and show that only the lower 
limit contributes significantly. 
Step (i) is a routine estimate obtained by writing A 3 k(1n n ) / n  for sufficiently large n, 
which implies I Y;2n I =s n-2k and similarly for YA, Y,*, etc. From this we derive the 

, IG'l s n-k ,  where primes denote differentiation with respect to t, bounds IF'I S n 
and observe F = 0(1) ,  thus establishing: 

I2 = (27r)-' 

-2k-4  

(5.13) a 
a t  - ln[F + (F2 - G2)'l2] + 

r<(k+l) ln n/n 
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To implement part (ii), we let f (e ,~$)  denote the integrand while f(8, 9) and d are 
defined as the functions obtained when w 2  inf(0,rb) and A, respectively, are replaced by 
r . Performing the differentiation explicitly, i.e. 2 

F’ + (FF’- GG’)/(F2 - G2)’/’ m, rb) =I_- F + (F’ - G ~ ) ~ / ~  (5.14) 

and analogously for f(O,rb), one may compare the differences in the terms and write Iz  
as 

n-l12= n- l (27 iy  j j f (@,rb)  d e  drb + O(xn?, n-’). (5.15) 

The final step involves evaluating (5.15) as an exact integral. The integrand, f ( &  +), 
= ( z  + r2) l / ’ ,  thereby allowing a change of 

r<(k+l ) ( ln  n ) / n  

is a function of r2 = 02+ 4’ only through 
variables in the derivative via 

(5.16) 

Changing the integration variables to polar coordinates results in (with k = 5 )  
i a  

2r ar 

61nn 

Iz = (2lr)-* lo r dr -_ - ln[F + (F2 - G2)1/z] + Q(xn-’, n-’) 

1 
477 

-- In[F + (F2 - G2)1/2]~=zi/2+O(xn-2, n-’) 

= - ln[F + (F2 - G2)1’2]/i=[z+36(lnn)/nl’/2 

(5.17) 

where the subscript d indicates that A is replaced by d in the functions within the 
brackets. Estimating the upper limit, i.e. the first part of (5.17), by the method leading 
to (5.13), one obtains 

(5.18) 

1 
477 

Upper limit = (4lr)-’ In 2 + ~ ( n - ’ ) .  

Hence, the final expression for the integral is 

1, = (477)-’ In 2 - (4~)-’ ln[F + (F2 - GZ)1/2]e=4=o + O(xn , n-’). 

(for A fixed) as 
1 
n 

+ ( 4 7 ~ ) - ~  in 2-(4lr)-’ ln[F+(F2-G2)1/2]8=4=0}+Q(xn-2, n-’). 

(5.19) -1 

Combining (4.26) with (5.10) and (5.19) we have the spherical constraint equation 

2K = w 3 ( Z )  i- -{ - $Wz(Z) - 5 W 2 ( Z  + 4) 4- [(2 - A ) / A  ] w3(Z ) CA 

(5.20) 

This can be simplified further, using the expressions (2.22) and (2.23) for the Watson 
functions, and the estimate W2(t +4) = W2(4) +O(lzI), so that (5.20) becomes: 

3 2-A 1 
2K = W3(0) + - - - In 2 - 4 W2(4) + -- W3(0) + - In A + CA :( 8lr A 4T 

-I - l n [ J ~ + ( A o + 4 J ~ ) ’ / 2 ] + Q ( x n - 2 ,  n-’), (5.21) 
21r n 

where A. is the function defined by (4.2) and evaluated at 8 = 4 = CC, = 0. 
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For a given A, zc can be computed from A. = 0 (see Appendix) and equation (5.21) 
can be stated in terms of q5 = z - zc.  Much information is obtained from studying 
equation (5.21) from this perspective; however, we postpone this analysis until 9 7, at 
which point we derive the analogous equation in which A is also allowed to vary as a 
scaling parameter. 

The (reduced) inverse critical temperature is given by 

7 2-A 1 
2Kc = W3(0> + - - - In 2 - a W2(4) + - W3( 0) + - l n (A/a )  + CA) + O(xn -2, n-2) .  A (  8.n A 4 T  

(5.22) 

As expected, the-inverse critical temperature for the decoupled system (i = 0) diverges 
through the In JX term. It is also interesting to note that a logarithmic term of the form 
n In n is not present in (5.22). Such a term had been observed by Au-Yang et a1 
(1976) in their work on the two-dimensional Ising model with regular arrays of point 
defects (with concentration n-I) .  

-2 

6. Analysis near A = 0 and crossover between scaling regimes 

In this section we first consider the spherical constraint equation in case (ii), i.e. when 
A + 0 faster than n - l ,  and then analyse the crossover behaviour between the scaling 
regimes of case (i) (A fixed, non-zero) and case (ii). The scaling parameter which serves 
as a measure of the relative size of A in comparison with n- l  is found to be 

y = nA. (6.1) 
An expression for the spherical constraint in case (ii) is obtained (see (6.9)). The 
behaviour of the spherical constraint in the crossover between the scaling regimes of A 
fixed, non-zero and A + 0 is accomplished largely through a rather complicated definite 
integral (see (6.17)) and the smallest root, 4c = 4c(y,  i), of the equation (see Appendix) 

2 cos 4c + y (sin qC) /qc - 2 A  = 0. (6.2) 
This equation determines the regions in which the scaled variables y and are 
important, depending on which part of the equation can be neglected in evaluating the 
leading term of 4c. 

Once again we begin our analysis of the spherical constraint equation at (4.26). The 
methods of dealing with I2 (see (5.2)) closely parallel those in the preceding section with 
the result expressed in (5.19). Thus, we proceed to analyse II defined by (5.2). In the 
scaling regime A < n - l ,  the leading term of the critical value of z is given by (see 
Appendix) 

zc  = --A/n. (6 .3 
Hence, we consider complex z in the semi-annulus R = Rl U R2 defined by 

R={z: A <m<(A/n)1 '2 ,1mz>0},  

RI = Rn{z:  Re z a.}, 
(6.4) 

R2 = R n { z :  Re z CO}. 

The basic strategy is to evaluate Il exactly (in principle) for z E al. Since 11 is analytic in 
a, it can be continued into R,, and an La version of the Paley-Weiner theorem (see 
Rudin 1974 p 264) can then be used to continue the function 11 as a single-valued 
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function onto the segment of the negative real line where A < d\/lzl< (A/n)”’, which is of 
primary interest. 

In the region Cl,, we use the fact that A < d m  to write Y i l  in the form of the 
expansion 

where U =Ap[(2-A)(p2- 1)1’2]-1. This leads to the identity 
m 

These integrals can be expanded in a series in powefs of Az-l”, in a way similar to the 
Watson functions. This will not be necessary, however, for our purposes. If we subtract 
off the term ( 4 ~ ) ~ ’  In[(p2- l)”*/ YA]B=+=O, which we will show arises from 1 2 ,  then we 
eliminate the leading terms and establish the bound 

I’ - (4A)-’ In[(p2- 1)’12/ YA]e=+=0-(4A)-l In 2 = O(An-’) (A c n-’). (6.7) 

With the identity 

-ln[F+(F2- G2)1/2]e=6=o 
= n In Y+le=d=o-ln[(p 2 - 1)  1/2 /YA]e=+=o-2 l n [ J ~ + ( A o + 4 f i ) 1 / 2 ]  

(6.8) 
we may write the spherical constraint equation in the form 

1 1 
2K = W3(0)+-ln 2+-In[1+2/2+(2 + ~ ’ / 4 ) ’ / ~ ]  

2 r n  4 r n  

1 
2 r n  

- - l n [ J x  + (Ao + 4J1)’/2] + O(An -I), (6.9) 

The shift in critical temperature can then be shown to have the form 

K,(A = 0)  -K,(A) = O(An-’) (6.10) 

in the scaling region A << n-l ,  or y -f 0. 
We defer the discussion of equation (6.9) until 3 7.  At present we consider the 

scaling crossover between the two situations we have analysed, namely A fixed and 
A <n-’. 

We consider the integral Il first and show that an appropriate scaling function makes 
the transition from (5.10) for A fixed, to (6.9) in which A approaches zero faster than 
n . To analyse Il in the general case, we write -1 

(6.11) 
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The region of integration can be decomposed into R and R ’  where 

R = {(e, 4) ; e > o,4 > 0 ;  e2 + 4 < T }  

RI={(& 4): O s  e , 4  =Z v}\R. 
(6.12) 

In each of the integrals in (6 .11) ,  the portion of the integral in R ’  may be replaced with 
the corresponding integrand in which the z has been replaced by zero without a change 
of more than O ( ~ Z ( ~ ’ ~ ) .  In the region R, we consider the differences 

Di -11 {[Fi(z)-~i(~)]-[F,(O)-~~(O)]}de d4,  i = 1 , 2 , 3 ,  (6 .13)  

where F,(z )  are the integrands in Si, and F,(z) indicates that w 2  has been replaced by r2  
in the function. By using the types of methods discussed in 8 5 one may show that the 
differences Di are O ( z ) .  Hence, we may write 

R 

R R’ 

R 
(6 .14)  

in which only the first integral is a function of z.  The last two integrals do not contribute 
in a significant way since they are simply of the form n-’gl(A) and n- ’gz (A) ,  for some 
functions gl and g2 defined by (6.14).  Thus, it is the first integral which we analyse in 
greater detail. Since zc ranges between -.rr2/n2 and -A/n as the scaling regime changes 
from A fixed to A + 0 faster than n-’, it is convenient to write z as 

z = - q 2 / n 2  (6.15)  
so that q 2  is expressible in terms of the scaling variable x (see (5 .6))  and critical solution 
qc (see ( A 1 0 ) )  as 

q = - x + q 2  C .  (6.16) 
Having defined these variables, we analyse the first integral by (i) changing to polar 
coordinates so that r2 = e2 + q!2; the angular integration yields a multiplicative factor of 
~ / 2 ;  (ii) rescaling the integration from r to nr; (iii) showing that the upper limit of .rrn 
may be extended to +m without an error of more than n-2;  and finally (iv) allowing z to 
approach the negative real line from the upper half of the complex plane (in effect 
adding iE to z and then taking the limit as E + 0 after the integral) which we denote by 
placing a bar through the integral sign. Thus, the first and principal part of n T Il may 
be expressed as 

-1 2 

+ ~ ( x n - ~ ,  n-2)  
where y = nA is the scaling variable previously defined. 

(6 .17)  
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We may now write the spherical constraint equation as 

2K = W3(z) + n-'1lp(x, y, 4c, X) + n-'gl(A) + n-'gz(A) 

+(4m)-'{ln 2 + n  In Y+-ln[(p2- 1)1/2/YA]e=4=o 

-2 l n [ ~ + ( ~ ~ + 4 f i ) ~ / ~ 1 ) + 0 ( ~ ~ - ~ ,  n-') 

which may be simplified further to 

(6.18) 

+ n-'g1(A) + n-'g2(A) + (47rn)-' In 2 

- (2m) - l  In[JA,+ (Ao+4J~)1 /2 ]+O(~n-2 ,  n-'). (6.19) 

It is appropriate at this stage to put the term 

H(h,  n, z,  zc)=1n(J%+Ao+4fi) (6.20) 

into a form in which the crossover behaviour is more transparent. In particular it is 
desirable to write the function in a form involving the scaled variables of both regimes. 
As shown in the Appendix, the function A. can be written, to sufficiently high order in 
n for our purposes, as -1 

- 2 f i .  
sin1 n& 

n J i  
A 0 z 2  cosh n&+n (6.21) 

In terms of the scaling variables x and y, and the implicit function qc = 4c(y, x) given by 
the largest root of (6.2), AO can be written 

Defining &(x, y, X) by 

(6.23) 

we may write H(A, n, z, 2,) in terms of both sets of scaled variables as 

H = ~ ( x ,  y, X) = In[(H+(x, y, X))'"+ (H-(x, y, X))1'2]+ O(xn-', n -'I. 
The final form of the spherical constraint equation is then 

(6.24) 

+n-l[gl(A)+gz(A)]+(4.rrn)-'In 2-(2m)-'H(x, y, X)+O(xn-2, n-'), 
(6.25) 

where to recapitulate, 1lp is defined in (6.17), gl(A) and g2(A) are given by (6.14) while 
H(x,  y, x) is given by (6.24). 

The above expression for the spherical constraint reduces to the expressions (5.2 1) 
or (6.9), respectively, as one specialises to y >> 1 (A fixed, non-zero) or x - 1. 
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The most important part of the crossover behaviour occurs within the term 
H(x ,  y ,  i), We know a priori that the spherical constraint equation must display 
drastically different behaviour in the two scaling regimes. The role of all but the last 
terms in (6.25) is essentially to provide the appropriate constants and to vanish as A + 0. 
The function H ( x ,  y, A) is chiefly responsible for the major changes necessary in the 
spherical constraint equation such as divergence at A = 1, creation of a q5”’ term at 
A = 0, etc. A discussion of the origins of these transitions will be the subject of the next 
section. 

7. General scaling behaviour and thermodynamic functions 

In the first part of this section we discuss the qualitative scaling aspects of the spherical 
constraint equation in the form (6.25) which has, as its limiting forms, equations (5.21) 
and (6.9) for the A fixed, non-zero and A + O  faster than n-l scaling regimes. In the 
latter part of this section we discuss the implications for various thermodynamic 
functions. The functions responsible for the crossover behaviour must (i) restore the 
term -z1/’/4n = -q51’2/4n for the pure system (A = 0); (ii) create a logarithmic term, 
In 4, for the decoupled system (A = 1); (iii) create a term of the form q5 ‘I2 with a large 
coefficient (which turns out to be O(n ”’)) for the intermediate situation of arbitrary, 
fixed A (0 < A < 1) which ‘hooks up’ the spherical constraint functions of the situations 
(i) and (ii) (see figure 3). 

We begin by studying the scaling regime in which A does not approach zero, i.e. A is 
fixed or A + 1, which is governed by equation (5.21). At the limit A + 1 the planes of 
impurities decouple the system so that one has the finite size effect studied by Barber 
and Fisher. To see that this is in fact the case, one may write (5.21) as 

1 1  
n-’). 

2K = W3(0)+-(  1 
n 

Upon writing the identity 

Ao= Y: + Yr +$(~’- l ) -~’~(Y:- l  - Y?) 

which is approximated to the order of interest by 

(7.1) 

one has the result, identical to that of Barber and Fisher (1973), that 

2~ = ~ ~ ( 0 )  + ( ~ ~ ( 0 )  -$  ~ ‘ ( 4 )  - 7 In 2/8n)/n 

-(In n)/4nn - R ~ , ~ [ ( X / T ~ )  - 1]/4nn + O(xn-2, n-2) (7.4) 

where Rl,o(x) = ln[sinh(nxl”)/nx ‘I2] is the remnant function defined in Barber and 
Fisher (1973), Fisher and Barber (1972) by 
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As the critical point is approached (i.e. x + 0 in terms of the scaled variables) the 
expected logarithmic divergence arises from the remnant function since 

R d x ) - l n ( l  +XI, x + -1+. (7.6) 
Hence, the origin of the logarithmic divergence is in the term In[Jxk (Ao + 4J1)1/2]. 
For # 1 (i.e. A # 0), this divergence is prevented by means of the 4JZ term within the 
radical. As noted earlier, 1 itself is a scaling variable in this regime which is mainly 
responsible for the transition from an essentially two-dimensional system to one which is 
three-dimensional with impurities. 

To examine the behaviour at the opposing end, near A = 0, one may begin by writing 
A .  as A ,  = (t - z , ) ( a A / ~ z ) , = z c .  Performing the differentiation and substituting 
zc = -A/n (see the Appendix), one has to leading order A. = 4 n 2 ,  so that 

(2vn)-' ln[(Ao+Ao+4~)'/2] = (2vn)-' ln[n4'/'+ ( n 2 4  +4)'/']. (7.7) 
As x = n 2 4  + 0, this term becomes q5"2/4vn plus a constant term (In 2)/2vn (which 
cancels with a previous such constant) and one recovers the pure 3D behaviour 

2K w3(0) - Z ' / ~ / ~ T .  (7.8) 
Using the same type of approximations we find A.  = 4n3/2v2 for A fixed, so that the 

leadingtermisn 4 (foraverysmallrangeof 4,namely4 < n - 3 ) .  Thus,thesituationis 
as illustrated in figure 3: for intermediate A ,  one has a 4'" term characteristic of a 
three-dimensional system; however, it has alarge (negative) slope. As A approacheszero 
the coefficient of 4 ' I 2  diminishes (in absolute value), i.e. the slope becomes smaller, while 
zc  approaches the pure value, and the spherical constraint curve 'hooks up' with the pure 
system. Alternatively ash approachesunity (for fixed n ) the slope becomeslarger until the 
4 term eventually becomes logarithmic, thereby connecting with the logarithmic 
divergence of a two-dimensional system. 

Asnotedins 6,1n[JA0+ (Ao +4J~)'/2]canbewrittenintheformofH(x, y, 1)defined 
by (6.24). The various limits discussed above can also be seen directly from this form. In 
particular, at x = 0, H- = H,, leading to the logarithmic divergence at T, from the In A. 
term. The behaviour of the spherical constraint for intermediate values of A and n is 
governed by the rather complicated expression for H(x,  y, x) which takes on a much 
simpler form, as discussed above, when the extremes A = 0 or A = 1 are approached. 

The scalingbehaviourof thesphericalconstraint function Xq (s - pq)-'determines the 
scaling behaviour of various thermodynamic functions such as the specific heat, the 
entropy and the internal energy. In particular, the spherical constraint equation we have 
obtainedyields thespherical fields as afunctionof T ;  hence thezero-fieldspecificheat per 
spin, which is given by (2.15) as 

(7.9) 
can be evaluated explicitly. The scaling and crossover behaviour discussed for the 
spherical constraint equation thus applies also to the specific heat. In particular, in the 
region of fixed and non-zero A one has a spherical constraint of the form 

1/2 1/2 

CH(T) = %B - (as/aT)h=o,s, 

2K = W,(z) + n- ' f ( i ,  x) 

where f(i, x)  is defined explicitly by (5.21), so that 

(7.10) 

(7.11) 
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and the specific heat is given by 

C H ( T ) ~  CH(A = O ,  T)+n-12J2/k~T2[2f(h;  x)/a4]s, (7.12) 

where thevalueof 4, orequivalentlyx, isdeterminedby(7.10). Analogousremarksapply 
totheotherh regions. Inasimilarwaytheentropymaybeevaluated,using(2.14)andthen 
integrating the spherical constraint function Zq (s - pq)-' over s. Various other ther- 
modynamic variables such as the internal energy may be obtained from these ther- 
modynamic functions. 

We note, however, that the susceptibility cannot be calculated from the spherical 
constraint equation directly. The zero-field susceptibility is given by 

(7.13) 

where thevariables eq aredefinedby(2.10) assumsof columnelementsof thediagonalising 
matrix U. For the pure system, eq = N-1'2Sq,o, so that x0( T) takes on aparticularly simple 
form. Inthemoregeneralcaseofimpurities,however,theeq willnotbeeasilyexpressiblein 
closed form and further analysis is necessary to find the asymptotic behaviour of the 
eigenvectors. This seems to be an intrinsic difficulty since other ways of computing the 
susceptibility eventually entail further information on eigenvalues and eigenvectors. 

8. The spherical model with impurities in other dimensions and co-dimensions 

In the preceding sections the problem of two-dimensional impurities in a three- 
dimensional lattice was discussed in detail. It is of interest to consider the problem of 
regular impurities in the spherical model in other dimensions and co-dimensions (i.e., the 
dimensionality of the space minus the dimensionality of the impurities). In thissection we 
formulate the problem in various other cases, although the detailed analysis is not carried 
out. 

The problem which is closest to the one we have analysed is that which has 
co-dimension equal to one for an arbitrary space dimensionality. For integer dimen- 
sions, d, the analysis of det(s1-J) closely parallels the d = 3 case. The main difference, 
of course, is that the product over three indices becomes a product over d indices, which 
is eventually transformed into a d-fold integral. Explicitly, for d = 4, one has an 
expression (compare with (3.17)) 

J"de t (s1-J )=  n [ Y :  +Ylf. -h (Y: - ' -Y" ' ) /X-2~cosy l ]  (8.1) 

in which X, Y,  are redefined by modifying the variable a in expression (3.12) to 
i ,k,l,q 

a = s/ J - 2ai - 2pk - 2wq, (8.2) 
where wq = cos(2.rrq/N4) and N4 is the length of the lattice in the fourth direction, so that 
N = NlN2N3N4n. The algebraic identities of § 4 are all valid with the new definitions of 
X and Y*. For three dimensions the behaviour of the pure system was recovered 
through the identity 

2 w  

W3(2) = (27r)-' 11 de d 4  i (p2-  l)-'". (8.3) 
0 
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A very similar situation occurs for four dimensions where 
2rr 

W4(t) = ( 2 7 ~ ) ~ ~  dB d 4  dw $ ( p 2 -  1)-"2, 111 (8.4) 

and ( p 2  - 1)1'2 = $X is defined in the four-dimensional sense as discussed above. For 
the system with impurities an analysis similar to d = 3 may be carried out beginning with 
(4.26) upon appropriate modification of X, Y*, Y, via (8.2) and addition of a third 
integral, 1:'' dw. 

For non-integral dimensions, d, one must essentially define what is meant by the 
d-dimensional integrals in (4.26). A basic method (M E Fisher, unpublished) for 
generalising a d-dimensional integral to a non-integer d is by using the identities 
(Montroll 1955, Maradudin et a1 1960) 

27r 

t - ' =  Iom e-'' dx, Io(?) = (27r)-' j0 etcos' de, ( 8 . 5 )  

where Io(t) is the Bessel function of zero order and pure imaginary argument. For 
example, functions wd(4) defined by (2.19) may be written 

The dimensionality is thus explicit in (8.6), so that this expression defines the functions 
for non-integral d. 

Impurity problems with co-dimension two include the work of Au-Yang eta1 (1976; 
Au-Yang 1976, Fisher and Au-Yang 1975) in which they considered regularly spaced 
point impurities in a two-dimensional Ising model. Since the spherical model in 
two-dimensional space does not exhibit a phase transition, one must consider d > 3. For 
d = 3  the problem becomes that of line impurities of separation distance m and n, 
respectively in the two directions. The determinant of S I - J  is evaluated in a way 
similar to that employed in § 3, i.e. by repeatedly using cyclic transformations to reduce 
the original matrix to one which is a manageable n x n. However, the following trick 
must be employed to ensure that the transformed matrix is one whose determinant can 
be obtained in closed form. If we use the notation B(i ,  j ) k , l  to denote the ( i ,  j )  element 
of the (k, 1) block of the block matrix B, and define the block matrix C by 

[C(k j ) l k , l  = [B(k, OIL, (8.7) 
then one has the equality det B = det C. For impurities placed on the bonds which lie 
perpendicular to the lines the final result may be expressed in the form: 

lnde t ( s I - J )= lnde t ( s I - Jo )+~  ln{l+(J-J ' ) [Ci ' (m,  m)],,,} (8.8) 

where the sum is over j = 1, . . . , N3, k = 1, . . . , N2, 1 = 1, . . . , NI;  ( r j  = 2.rrj/N3, & = 
2.rrk/N2, pl = 2.rrl/Ni, Jo is the matrix of pure interactions, and 

m n  

u = l  u = l  
[Ci' (m, m)],,, = (mn)-' 1 [s - 2 4 - 2 J  cos(2n-U -p l ) /m  

-23  cos(2av - 19~)/n]-'. (8.9) 

In the thermodynamic limit (N1, N2, N3 + OO), the sums over j ,  k and 1 become integrals 
over angle variables from 0 to 2.rr, multiplied by (2x)- ' .  Thus, the spherical constraint 
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equation and the critical temperature, Tc(m, n ) ,  can be obtained as an expansion in 
powers of (mn)-' upon (i) analysing the sum (8.9), and (ii) evaluating the largest 
eigenvalue of ( S I - J ) .  An analysis of [CO' (m,  m)],,,,, for asymptotically large m, n is 
carried out in Au-Yang et a1 (1976), while the largest eigenvalue of SI - J is presumably 
obtainable by the same method as that which is employed in the Appendix. The critical 
value of the spherical field, sc, can also be determined by a method similar to that used 
by Au-Yang eta1 (1976) to determine the critical temperature for the two-dimensional 
king model with point impurities. The basic idea is that the only source for a singularity 
in (8.8) is the vanishing of the argument of the logarithms. The second logarithm in 
(8.8) must be responsible for (i) creating a singularity at the new critical point and (ii) 
cancelling the singularity of the first logarithm, i.e. the critical point of the pure system. 
Hence, the critical value of the spherical field is determined by the appropriate solution 
to 

(8.10) 

It is easy to verify that such a singularity does indeed lead to the (s - sC)l" behaviour 
upon triple integration. 

Finally, we comment on the analysis of point impurities in the spherical model. For 
a concentration x of regular spaced point impurities, the free energy may be expected to 
assume the form (see Fisher and Au-Yang (1975)) 

(J'-J)[CO1 (m, m)lnSn = 1. 

f (  T, X )  A(x)[  T - T,(x)]'-". (8.11) 

This is just the assumption that the critical exponents do not vary with impurities. For 
small concentrations, x, one may write 

(8.12) 

so that the expansion of the right-hand side of (8.11) implies 

(8.13) f l ( T )  = A 1 [ T  - TC(O)]+(2-a)Ao[  7 1  aTc(x) [ T  - Tc(0)]-a+' 
x = o  

where A.  =A(O), A1  = [ a A ( ~ ) / a x ] ~ = o .  The functionfl(t) is the incremental free energy 
per impurity. Since A. is known from the pure spherical model, one may obtain 
A1 = [ a A ( x ) / a x ] , , o ,  i.e. a measure of the change in amplitude, by determining the 
critical shift TJx)  and the incremental free energy. The incremental free energy f l ( T )  
may be analysed using information about the expectation values of the pure system in 
the following way. 

Let X o  be the Hamiltonian for the pure system and %'I the Hamiltonian for the 
system with a single bond impurity so that 21 - XO = K'cr0cr1. Then 

m K'i 
efl(=) = exp[F(Xl) -Z7(X0)] = (exp(K'crocrl)) = - (cr&cr{) .  

j=1 I !  
(8.14) 

The expectation values cr&cr{ may of course be computed as derivatives of the free 
energy, i.e. 

baud = aF/aJol, (U&:) = (aF/aJo1)2 + a2F/aJi1, (8.15) 
etc. 
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This concludes our comments on impurities in the spherical model in various 
dimensions and co-dimensions. 

Appendix: the largest eigenvalue of SI - J 

In this Appendix we examine the function A(8, 4 , G )  (see equation (4.2)) at 8 = 4 = 9 = 
0 and analyse its leading zero as a function of z = s / J  - 6. It is evident from the spherical 
constraint equation (4.1) that the largest zero is the critical value of z,  denoted by zc. We 
write the identities (for n even) 

Y :  + YE = 2 cosh[n ln(p + ( p ’ -  1)’/2)] 

YT-’ - Y1-’ = 2 sinh{n ln[p + ( p 2  - 1)1’2]}, 

and note that for 8 = 4 = t,b = 0, p = 1 + 2/2 and ( p ’ -  1)’12 = ( z  +z2/4)’/’. Thus (4.2) 
can be written as the identity [Ao=A(O, 0, O ) ]  

A. = 2 cosh{n ln[l + 2/2 + ( 2  +z2/4)”’]} 

- 2 6. A sinh[n ln(1 + 2 / 2  + ( 2  + 2’/4)’/’)1 
( 2  +z2/4)’/’ 

+ 

From this one can conclude O a z , > - l / n  and that the leading coefficient in the 
expansion of zc can be obtained from the simplified expression 

Ao=2coshnJr+nA 
sinh n&-2f i  

n& 

- 2 J I  (for z < 0). 
sin nJT;? 

n m  
= 2 cos nJTfT+ nA 

For apure system (A = 0), the largest solution is z = 0. In the case of fixed non-zero A ,  so 
that A is eventually large in comparison with n-’, one can let z assume the form 

n1z1’/2 = a + b/n (A5) 

and asymptotically determine the coefficients a and b from (A4) by utilising the 
double-angle formulae for sine and cosine. This yields the result 

which in the special case of separating planes (A = 1) is just 

= r / ( n  + 1) + o ( ~ - ~ ) .  
Alternatively, in a scaling limit in which A << l /n ,  one can use a similar analysis to 

obtain 

1 ~ ~ 1 ’ ’ ’  = (A/n)1’2+O(n-2). (A8) 

zc = -q2 /n2  + (higher order in n-’) 

For A in an arbitrary scaling regime, we express zc in the form 

(449) 
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where qc = qc(y,  ,i) is the solution to 

and y = nh. 
The variable qc is 0(1), since 4: ST; consequently zc=O(n-* )  in all scaling 

regimes. 
We note also that, as a function of the complex variable z,  the function appearing on 

the right-hand side of (4.1) is analytic in the complex z plane outside a cut of finite 
length along the negative real axis from -zc to approximately -4d. 
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